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ON STABILITY OF CERTAIN NONSTATIONARY SYSTEMS* 

I. P. KOVAL'SKII and G. I. KUDIN 

Asymptotic stability of motion of mechanical objects the parameters of the mathe- 

matical models of which undergo sharp changes with respect to time, are investigat- 

ed. An artificial satellite in an orbit with certain masses attaching themselves 

to or being detached from it is an example of such an object. This gives rise to 

the problem of choosing a mode of variation of the mathematical models under which 

the system would remain asymptotically stable. 

Let the mechanical motion of an object be described by the following system of different- 

ial equations: 
dzldt = A (b) c, t > to (1) 

Here I is the phase vector of dimension n; B is an unknown vector function the components 

B1 = B*(t) (i = 1, 2,. . .( I)of which are piecewise constant functions continuous from the right atthe 

points of discontinuity and assuming some values from the closed intervals [ai,bJ for t > to, 
where ni and bt are known constants; A (B) = (aij (fl)): +I is an n x E matrix with components con- 

tinuously differentiable in p. 

Under the above assumptions the matrix A (B(t)) is piecewise constant in t for all t > to, 
since there exists a unique continuous solution of the Cauchy problem for the system (1) on 

any realization of p(t). 

Let Q(t,, T) be a set of bounded, piecewise constant vector functions 

' (to, ') = (g (t)' g (t) = (gl (t),. .I g, (t)), --b)<Qt < gt(t) < bt < W, 
t E It., Tl, i = 1, 2,. . ., I) 

Theorem, The unperturbed motion z (t)GO of the system (1) is asymptotically stable,it 

is necessary and sufficient that an instant of time T>,to exists such that the condition 

Xl,2 (P. T. to) < i 

holds, where Xlk are components of the fundamental matrix of solutions X (B, T, to) of the 

system (1). 

The sufficiency of the conditions of the theorem can be proved in the same manner as the 
proof of Theorem 4 of /l/. 

Necessity, Let the unperturbed motion z(t)=0 of the system (1) be asymptotically 

stable, without however assuming that a finite T>to exists for which condition (2) holds. 

Then, for every z>tO there exists at least one vector function p(t), tElt,,,rJ, such that 

i ~lxij'(l;! rV tO)Z 1 (3) 

If z (to) E GA= (z: Z*Z< h*) for t = to, then for t = T we have 

z (r) E Q = (5: z* N (B, T, to) I < h’) 

R (I% ‘T, to) = X-l* ;fi. T, to) X-’ (8, z, to) 

The set Q represents, in the phase space, an ellipsoid for which the following relations hold 

/2/: max (e.*+= ei*B-l(j3, T, to) .+z 
IEQ ' 

(i =~ 1. 2. ,, I) 

where ei is a unit vector. Obviously, 

i iI xiiz (P’ t, to) = i R;l((B> r, to) 
ix1 

Therefore from (3) follows 

5 mar @,*x)2 = 12 i R;; (p, r. to)> h2 
i=l i=l 

Thus an index i (I< i< n) exists such that 
ii. 

ma= (Pi?) > y 
XEQ 

This contradicts, by virtue of the arbitrariness of %>to , the assumption that the solution 

c(t)=0 of (1) is asymptotically stable. 
Let us discuss the feasibility of practical application of the conditions of the theorem. 

It can be shown that the matrix R-‘@t,to) is a solution of the Cauchy problem 
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dN-’ cp, I, f<,) 

c/t 
1 (p) n-1 #I, f. tq) ; I?‘@, f, f,,) /1* (p, (4) 

II-’ (p, frr, f”) = 1:‘ 

Therefore we can reduce the problem of verifying the conditions of the theorem to the follow- 
ing problem of optimal control: to find an optimal vector function p(t) and a least necessary 
time T>to minimizing the functional 

Let us introduce the transformation /3/ 
t = &)r + t", u a; z *< 1 

and write 

ci,(t;)--_ ~.tiP)- Q~~(P)~:‘~ i-= i 

\fJi, (PI E, 
i+f 

This enables us to consider, instead of the problem(4),(5), the problem of optimal control 
with additional control parameter o, but with fixed time of control, for the following system 
of scalar equations rnin min [ C’J’ (1)j-’ 

(II REQ(O.1) (6) 
d_V - 
dr 

E oi3 (fj) L\, .s (1,) = c 

We can solve (6) using the following gradient method: 

where a, and u2 are positive scalar constants obtained, just as in the gradient method of 
quickest descent, by minimizing the function J(jY+'. w~+%JI (S, J!J.+, w)= O~*BJ is a Hamiltonian, 
t(z) is the vector of the conjugate system 

dll,'dT = - Pll,dS, I$ (1) =- c 

and D16)((1,1) is the projection operator on the set 52(0,1). 
The convergence of the gradient method depends on the type of the relation A(B (f)) and 

was investigated in /3,4/. 
If the process of solving the problem formulated above yields p(t) and o which supply the 

global minimum to the functional (6), then (according to the conditions of the theorem) we 
can arrive at an unambiguous conclusion concerning the asymptotic stability of the unperturb- 
ed motion vf the system (4). Unfortunately, all known methods of solving the problems of 
optimal control of the type (6) clarify only the local behavior of the functionals. There- 
fore, only the sufficient conditions of the stability can be verified in practice. 

The authors thank V. G. Demin for assessing the results of this paper. 
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